- AN ENERGY-DEPENDENT HYDROGEN-EVOLUTION FROM DITHIONITE IN NITROGEN-FIXING EXTRACTS OF CLOSTRIDIUM PASTEURIANUM¹
- R. W. F. HARDY, E. KNIGHT, JR. AND A. J. D'EUSTACHIO CENTRAL RESEARCH DEPARTMENT? EXPERIMENTAL STATION E. I. DU PONT DE NEMOURS AND COMPANY, WILMINGTON, DELAWARE

Received July 6, 1965

Nitrogen-fixation by extracts of Clostridium pasteurianum requires both a reductant and an ATP-generator (1,2,3). Subsequently, identical requirements were demonstrated for the $N_2 \rightarrow NH_3$ conversion by extracts of Azotobacter vinelandii and Rhodospirillum rubrum (4). Reductants for one or more of these systems include H_2 , KBH4, NADH, and $Na_2S_2O_4$; phosphagens include acetyl phosphate and creatine phosphate. The interdependence of reduction and phosphagen was indicated by an ATP requirement for H_2 -evolution from dithionite by N_2 -fixing extracts of A. vinelandii (4), and an H_2 -stimulation of acetyl phosphate hydrolysis in extracts from N_2 -grown but not NH_3 -grown C. pasteurianum (5).

The present report: 1. demonstrates an ATP requirement for $\rm H_2$ -evolution from dithionite in $\rm N_2$ -fixing extracts of $\rm C.$ pasteurianum; 2. shows the presence and distribution of a reductant-dependent ATPase in these extracts; and 3. presents a mechanism for the function of ATP and reductant in $\rm N_2$ -fixing extracts from both aerobic and anaerobic organisms.

METHODS

Enzyme Sources - C. pasteurianum was grown either on N2

Preliminary report to Kettering Symposium, Yellow Springs, Ohio, March, 1965.

^{2.} Contribution No. 1111.

^{3.} Biological Nitrogen Fixation Colloquium, Butternut Lake, Wisconsin, October, 1964.

or NH₃ plus argon. Extracts were prepared as described earlier from this laboratory (6) and stored under H₂ at room temperature until used. These extracts were treated in four ways: 1. stirred

TABLE 1

ENERGY-DEPENDENT	H - EVOLUTION

		<u>~</u>				
Preparation	Gas	Gas HEvolution			(mole % of atm)	
	Phase	Complete	-C~P	-Na S O L	-Enzyme	
1. C. pasteurianum-N2	A	8.6	7.8	1.3	1.4	
2. "	CO	2.8	0.4	0.1	0.1	
3. " DEAE-Treated	A	4.2	1.1	1.2	-	
4. C. pasteurianum-NH3	CO	0.8	0.5	0.2	<u> -</u>	
5. A. vinelandii-N ₂	CO	3.2	0.2	0.1	0.2	

Extracts from N₂-grown and from NH₃-grown cells indicated by N₂ or NH₃.

Complete system contained in µmoles per 4 ml: K cacodylate, 100; Na₂S₂O₁, 100; C~P, 160; and ATP, 10, all at pH 6.5 for <u>C</u>. <u>pasteurianu</u> and 7.0 for <u>A</u>. <u>vinelandii</u>; and MgCl₂, 2.0; and in mg per 4 ml: <u>C</u>. <u>pasteurianum</u> or <u>A</u>. <u>vinelandii</u> extract 40, and creatine kinase, 0.2. The gas phase was flushed repeatedly, and filled with 0.92 atm of CO or A prior to 1 hr incubation at 30°C. Hydrogen is expressed as mole % of atm/hr/incubation flask on the basis of A or CO as 100%. One percent of an atm equals 13 µmoles of gas. Corrections of mass 2 due to arsine were negligible.

at pH 6.5 with 2 mg semi-dry DEAE-cellulose/mg protein to remove ferredoxin (2); 2. stirred at pH 7.0 with 0.5 volumes of Dowex-1 per volume of extract to remove ADP; 3. stirred with phosphate gel to produce a partially purified nitrogenase (7); and 4. heated under H₂ for 15 min at 60° or 70°C to produce heat-treated preparations. A. vinelandii was grown and extracts prepared according to (4).

<u>Determinations</u> - Nitrogen-fixation was measured as net NH_3 synthesis (1), H_2 -evolution as $H_2\%$ of atm in a Consolidated Mass Spectrometer, and ATPase as release of inorganic phosphate from ATP (8) or of creatine from creatine phosphate (9).

RESULTS

 \underline{H}_2 -Evolution - The data on \underline{H}_2 -evolution are given in Table 1.

 \underline{c} . pasteurianum extracts catalyze a substantial H_2 -evolution from dithionite solutions via ferredoxin and hydrogenase without

TABLE 2

REDUCTANT-DEPENDENCE OF ATPase

Pr	eparation	Treatment	Gas	ATPase			
			Phase	+Na SO	-Na ₂ S ₂ Ο _η lyzed (mμmo	AReductant	
				C~P hydro.	lyzed (mumo	les/min/mg	
				protein)			
l.	Extract-N	-	Α	65	24	41	
2.	11	~	Н ⁵	-	77	53	
3.	tī	~	GO	41	18	23	
4.	11	DEAE-cellu	lose A	46	19	27	
5.	II	11	H ₂	-	22	3	
6.	tt	Dowex-1	CO	40	15	25	
7.	"-ADP	tr	CO	00	11	-1	

Extracts from No-grown C. pasteurianum.

Complete system contained in μ moles per 2 ml: Na₂S₂O₄, 50; c~p 110; Tris.Cl, 100; and ADP, 2, all at pH 7.0; and MgCl₂, 5; and in mg per 2 ml: creatine kinase, 0.2 and <u>C. pasteurianum</u> extract, 20. Flasks were flushed and covered with 0.92 atm of indicated gas and incubated for 45 min at 30°C.

dependence on energy (line 1). This energy-independent evolution is inhibited 95% by CO (line 2) and 85% by the removal of ferredoxin with DEAE-cellulose (line 3). Addition of a phosphagen then permits the demonstration of an energy-dependent H₂-evolution. Creatine phosphate (C~P) (40 mM) increases H₂-evolution of DEAE-treated or CO-covered extracts by 3.4 to 7.0 fold (lines 2 and 3). Other phosphagens, e.g., 15 mM ATP or 50 mM acetyl phosphate, are also active. This energy-dependent evolution occurs in extracts of N₂-grown but not NH₃-grown C. pasteurianum (lines 2 and 4). It is quantitatively similar in extracts of C. pasteurianum and A. vinelandii (lines 2 and 5).

ATPase - Reductant-dependence of ATPase in N_2 -fixing extracts of \underline{C} . pasteurianum is shown in Table 2. Either dithionite or H_2

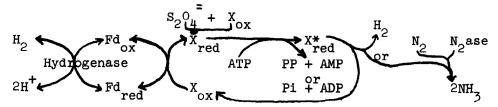
		TABLE 3	
DISTRIBUTION	OF	REDUCTANT-DEPENDENT	ATPase

Preparation	Treatment	ATPase				
		4Na S O AReductant				
		C.P hydrolyz	ed (whrwores)	min/mg protein)		
1. Extract-N ₂	-	67	25	42		
2. "	60°C 15'	36	24	12		
3. "	70°C 15'	12	27	-1 5		
4. "	Phosphate (gel 2	2	0		
5. Extract-NH3	-	35	53	-18		
6. "	60°C 15'	34	46	-12		
7. 2 + 4 (1:1)	 	52	15	37		
8. 3 + 4 (1:4)		26	8	18		
9. 5 + 4 (1:1)		53	3 6	17		

Extracts from N₂-grown and NH₃-grown <u>C. pasteurianum</u> indicated by N₂ or NH₃.

Assay conditions as in Table 2; gas phase 0.92 atm CO.

stimulates the hydrolysis of CoP in the presence of its kinase and ADP (lines 1 and 2). Only dithionite is an effective stimulant under CO or after removal of ferredoxin with DEAE-cellulose (lines 3, 4, and 5). The reductant effect occurs at the site of ATP hydrolysis and not that of creatine phosphate since removal of ADP by Dowex-1 abolishes creatine release unless ADP is added (lines 6 and 7). Furthermore, the hydrolysis of 15 mM ATP is stimulated by either reductant.


The distribution of the reductant-dependent ATPase in extracts of <u>C</u>. pasteurianum is shown in Table 3. It occurs only in extracts from N₂-grown cells (lines 1 and 5). It is decreased by heating at 60°C (line 2), destroyed by heating at 70°C (line 3) and removed by treatment with phosphate gel (line 4). As expected, the extract of NH₃-grown cells is still inactive after heating at 60°C (line 6). The reductant-

stimulated ATPase contains at least two enzymatic components as shown by recombination of partially or completely inactivated preparations (lines 7, 8 and 9).

 N_2 -Fixation - Dithionite is an active reductant for N_2 -fixation by untreated or DEAE-cellulose treated extracts of N_2 -fixation by untreated or DEAE-cellulose treated extracts of N_2 -fixation in a system identical to that for N_2 -evolution (Table 1). The untreated extract fixed 2.8 mm moles of N_2 -min/mg protein with dithionite as a reductant. Removal of ferredoxin with DEAE-cellulose did not reduce N_2 -fixation by dithionite but reduced fixation by pyruvate to 3% of that of the untreated extracts. Addition of ferredoxin restores fixation by pyruvate

DISCUSSION

The following mechanism is compatible with the recent observations on N_2 -fixation, energy-dependent H_2 -evolution from dithionite, and reductant-dependent ATPase.

It is proposed that H_2 via hydrogenase and ferredoxin (Fd) reduces an electron acceptor X to $X_{\rm red}$ or, alternatively, dithionite, independently of hydrogenase and Fd, reduces X. The reduced acceptor $X_{\rm red}$ is activated to $X_{\rm red}^*$ by ATP through a coupling enzyme. The $X_{\rm red}^*$ is reoxidized by evolution of H_2 or by reduction of N_2 chemisorbed to nitrogenase (N_2 ase). All six of the electrons required for the reduction of one molecule of N_2 may not require activation by ATP.

The energy-dependent H_2 -evolution and the reductant-dependent ATPase appear to be part of the N_2 -fixation system since they are present in extracts of N_2 -grown but not NH_3 -grown cells. Their insensitivity to CO compared with N_2 -fixation's sensitivity (7) indicates that the site of N_2 -chemisorption is not involved

in either phenomenon.

The characteristics of the energy-dependent evolution of H_2 from dithionite by N_2 -fixing extracts of A. <u>vinelandii</u> (4, 10) parallel those described here for C. <u>pasteurianum</u>. Thus, the mechanism with the exception of hydrogenase and Fd may be common to N_2 -fixation by both aerobic and anaerobic organisms.

REFERENCES

- 1. Hardy, R.W.F., and D'Eustachio, A. J., Biochem. Biophys. Res. Comm., 15, 314 (1964).
- 2. D'Eustachio, A. J., and Hardy, R. W. F., Biochem. Biophys. Res. Comm., 15, 319 (1964).
- 3. Mortenson, L. E., Proc. Natl. Acad. Sci. U.S., 52, 272 (1964).
- Bulen, W. A., Burns, R. C., and Le Comte, J. R., Proc. Natl. Acad. Sci. U.S., <u>53</u>, 532 (1965).
- 5. Dilworth, M. J., Subramanian, D., Munson, T. O. and Burris, R. H. Biochim. Biophys. Acta., in press.
- 6. Carnahan, J. E., Mortenson, L. E., Mower, H. F., and Castle, J.E. Biochim. Biophys. Acta., 44, 520 (1960).
- 7. Mortenson, L. E., Mower, \overline{H} . F., and Carnahan, J. E., Bact. Rev., 26, 42 (1962).
- 8. Taussky, H. H., and Shoor, E., J. Biol. Chem., 202, 675 (1953).
- 9. Ennor, A. H. in "Methods in Enzymology" (editors), S. P. Colowick and N. O. Kaplan, Vol. 3, Academic Press, Inc., New York, 1957, p. 850.
- 10. Burns, R. C., and Bulen, W. A., Biochim. Biophys. Acta., in press.